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ABSTRACT

For a (finite) group G and some prime power p”, the H,»-subgroup H,- (G) is
defined by H,» (G)={(x € G [x*"# 1). A group H# | is called a H,»-group, if
there is a finite group G such that H is isomorphic to H,» (G) and H,- (G)# G.
It is known that the Fitting length of a solvable H,»-group cannot be arbitrarily
large: Hartley and Rae proved in 1973 that it is bounded by some quadratic
function of . In the following paper, we show that it is even bounded by some
linear function of n. In view of known examples of solvable H,-groups having
Fitting length n, this resuit is “almost™ best possibie.

1. Introduction

The concept of the generalized Hughes H,»-subgroup H,-(G)=
(x EG |x"" #1) of a finite group G(p a prime, n = 1) is a direct generalization
of the (Hughes-) H,-subgroup H,(G) defined by Hughes in [11], H,(G) being
just H,(G). To have a picture, consider a nonabelian dihedral group G, then
HA(G) is the cyclic subgroup of index 2 in G. The subgroup H,- (G) was first
introduced and investigated by Kurzweil ([15]) and by Gallian ([2]), and it seems
natural to look for theorems about H,--subgroups generalizing the known
theorems about H,-subgroups.

In the beginning Hughes and others were concerned with the possible index of
H,(G) in G, if it is a proper subgroup of G, see [2]. But soon afterwards the
subgroups themselves were investigated, and Hughes and Thompson ([12]) and
Kegel ([14]) showed that groups occurring as the proper H,-group of some finite
group are nilpotent. This fact, of course, is related to the nilpotency of a finite
group admitting a fixed-point-free automorphism of prime order. As for the
generalized H,~»-subgroups: the problem of “determining” their structure should
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be related to the problem of describing groups admitting a fixed-point-free
automorphism of order p”.

Now it is known that finite solvable groups admitting a fixed-point-free
automorphism of order p" have Fitting length bounded by a linear function of n
(in fact, this function is n itself, see [1]).

In the following we shall determine a function f(n), such that the Fitting
length of a finite solvable H,--group (i.e. a group isomorphic to the proper
H,~-subgroup of a finite solvable group) is bounded by f(n). And while in [10]
Hartley and Rae gave a quadratic function, this one is linear.

Our proof uses induction on n, and the induction step is based on an
investigation of the representation of the semidirect product (F.. (G)/F{G))A
on F(G)/F.-\(G), where F{G) denotes the j-th term of the upper Fitting series
of G and A is some cyclic subgroup of G not contained in H,-(G). Thus the
proof parallels the proofs of the corresponding theorems about fixed-point-free
action of cyclic p-groups — but some care is needed, since in our case the action
of the p-elements is not really fixed-point-free, and G is not necessarily a
semidirect product. As a consequence of the somehow more complicated
representation theory for p =2, we get a worse result for p =2 than for odd
primes. To make it precise: the function is f(n) = 2n for odd primes p, while it is
f(n)=4n for p =2 (Theorem 2.7, Theorem 2.9).

Nonsolvable groups are not considered in this paper. There is no hope to
prove the solvability of H,--groups in general: there is a group H with
As= H= Aut(A,), such that A, = Hy(H). Note that H is neither isomorphic to
Zs-nor to PGL,(9).

Notation is taken from [13]; the Fitting length of a solvable group G, i.e. the
length of its upper Fitting series {F(G)}, is denoted by h(G). A critical subgroup
of a finite p-group P is a characteristic subgroup C of P such that every
p’-automorphism of P acts nontrivially on C and C has the properties described
in ([3], 5.3.11 and 5.3.13). An element x of order m is said to act exceptionally on
the module V, if the degree of the minimal polynomial of x on V is smaller than
m.

2. The results

The following obvious facts are frequently used in the reduction of minimal
counterexamples.

(2.1) LeMMA. Let G be a finite group with H,»(G)# G, x € G\H,~(G).
Then:
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(i) H,~(U)CH,-(G)N U for every subgroup U of G.

(i) H,»(G/N)C H,~(G)N/N for every normal subgroup N of G.
(iii) Co(xu) is a p-group for every u € H,»(G).

(iv) (xuY" =1 for every u € H,-(G).

v) IfU=G, U = U then H,»((U,x)) #(U, x).

PrROOF. (i) to (iv) follow directly from the definition, while (v) is a conse-
quence of (i).

(2.2) Lemma. Let G be a finite group with H,-(G) # G, and x € G\H,»(G)
an element of order p". Let V.= M/N be an elementary abelian (x)-invariant
section of H,-(G). Then:

(i) x acts exceptionally on V,

(i) if K is some normal subgroup of G such that V is K-invariant and
V=Vi+ Vo+ --+ + V, is the direct sum of its homogeneous K-components, then
z:=x""" fixes every V..

PrROOF. (i) Assume there is an element v EM such that
w= vx!’ *‘prn‘z o vxzvva N,

then (xv)" = x”'w = w & N, contradicting (2.1)(iv).

(i) Assume by way of contradiction that x*"* does not fix the submodule V;.
Then the sum of the submodules V{, j=1,..., p", 1s a direct sum and (x) is
represented regularly on it contradicting (i).

(2.3) LemMAa. Let G = QP be a finite group with 1 # Q = 0,(G) and P = (x)
cyclic of order p”, q# p primes, p odd or p =2, p" =4. Let G act faithfully and
irreducibly on_the GF(r)-module V, r a prime, and let [Q,x"""']|#1. Then
Co(x)# 1 provided one of the following conditions holds:

(i) r=p, and x acts exceptionally on V,

(1) r# p, and x acts fixed-point-freely on V.

Proof. Consider the case p# 2. Assume condition (ii) holds, then x cannot
be fixed-point-free on Q by [5] Theorem 2, so Co(x)# 1. But if condition (i)
holds, then by a Hall-Higman-reduction we may assume that Q =[Q,x*""],
Q/Q' is irreducible under the action of (x), ¢(Q)=2, p a Fermat prime and
q = 2. Now the arguments of [5], pp. 1442-1445 go through to show Co(x) # 1.

So let p" =4, then (after the usual reductions), if V is a Q-homogeneous
module, Q = [Q,x?] is extraspecial, Z(Q)C Z(G) and so Co(x)# 1.

If, however, V is decomposed into the sum of four QO-homogeneous compo-
nents permuted by (x), then (x) is represented regularly on V. And if the
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number of components is two, then x° does not induce a central automorphism
on both components since Q =[Q, x*] and therefore again (x) is represented
regularly on V. In both cases neither (i) or (ii) can be satisfied.

REMARK. Gross’s example ([S]. p. 1441) shows that (2.3) does not hold for
powers of 2 greater than 4.

The following fundamental property of the upper Fitting series of a finite
solvable group will be used in (2.6) and (2.8). To have an easy reference we put it
as a lemma; of course, it is well-known, see for instance {7], Lemma 2.2.

(2.4) LemMAa. Let G be a group, p a prime and i = 1. Then O,(G/F(G))
operates faithfully on O,{(F{G)/F._\(G)).

ProoF. By induction we may assume i = 1. Then if L denotes the subgroup
of G such that L/F(G)= Co,rio» Op,{F(G)), then L is a normal nilpotent
subgroup of G, thus contained in F(G).

The next lemma is more or less implicit in the proofs of [6] Theorem 2.2 and
Theorem 2.4. For the second statement an induction proof similar to ours was
given by Hartley in [9] Lemma 1.

(2.5) LEMMA. Let V be a nondegenerate symplectic space over GF(r), r =
2" —1 a Mersenne prime, and let g be a symplectic transformation of V of order 2"
such that the dimension of the subspace [V, g] is at most 2. Let Q be a q-group of
symplectic transformations of V normalized by g, q a prime different from r, and let
h=g"", z:=g""". Then the following holds:

() [Q.z]=1if q is odd,

(i) [Q,hh]l=1ifgq=2.

Proor. Since z inverts elementwise the subspace [V, z], the whole space V
splits into the orthogonal sum of [V, z] and Cyv(z). Therefore [V, z] is itself a
nondegenerate symplectic space with the restriction of the symplectic form, and
so [V,z] =[V, g] is two-dimensional.

We use induction on dimgr,, V +|0Q|.

Since by hypothesis q is different from r, under the action of (Q, g) the module
V splits into a direct sum of irreducible submodules V;. And since [V, g] is
irreducible for (g), we may assume that [V, g] is contained in V;. But now if V; is
properly contained in V, by induction we get [Q,z]C Co(V)) if q is odd and
[Q,h, k] C Co(V)) if q=2, since the irreducible module V; is not totally
isotropic and so is nondegenerate. Thus the result follows if V; is properly
contained in V, since h centralizes the V;, i#1, and therefore [Q,z]C
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Nz Co(V)N Co(Vi)=1 for q odd and [Q, k, k] C N Co(V)N Co(Vi) =1
for g =2.

Thus we may assume V to be irreducible for (Q, g).

Assume ¢ is an odd prime.

Then we may also assume that Q is a g-group of exponent ¢ and class at most
two and Q =][Q, z], by taking a critical subgroup C of Q and applying the
induction hypothesis to [C, z} if it is a proper subgroup of Q. Let Vo=U,+
-++ + U, be the decomposition of the irreducible (Q, g)-module V into its
Q-homogeneous components. Then k =2, since the U; are permuted transi-
tively by (g) and dim[V, g] =2; and if k =2, then z fixes U, and U, and so
[V.g]#1V,z], contradicting the hypothesis. Thus V is the direct sum of
isomorphic Q-modules, and therefore Q is either cyclic or extraspecial. Next we
tensor the GF(r)-module V with an extension ¥ of GF(r) which is a splitting
field for all the subgroups of (Q, g), then the module V* =V & ¥ is a direct
sum of irreducible # (Q, g)-modules W;, and since CAQ)QRQ K = Cv-(Q)=0
and dimgr[ V, g] = dimx[ V*, g] =2, there are at most two of these. As above,
one easily finds that each W, is Q-homogeneous and therefore Q-irreducible by
[17] Theorem A. But since the dimension of an irreducible #Q-module is a
power of g, and dimension V* is even, we get V* = W, + W,. Now z does not
centralize W, or W,, so the commutator modules [W;, g] =[W,, z] are one-
dimensional for i =1,2.

If Q is extraspecial, this is impossible by [13], Theorem 17.13. If Q is abelian,
the modules W, themselves are one-dimensional and V* is inverted elementwise
by z. This gives Q =[0,z}C Co(V) =1, a final contradiction. This contradic-
tion finishes the case q odd.

Assume q =2.

Let x € Q be an element such that [x, h, k] # 1. Then by minimality of | Q | we
can assume that (Q, g)=(x, g).

Let A be a maximal elementary abelian normal subgroup of G:=(x, g) and
take N a normal subgroup of G containing A minimal such that V viewed as a
N-module is the sum of two-dimensional irreducible N-modules. Clearly such N
exists. Let Vy=W;+ --- + W, be the decomposition of the irreducible G-
module V into the N-homogeneous components. Then as above g has to fix all
of them, so (x) permutes the W, transitively, and since without loss of generality
[V,g]C W, and g centralizes the W, for i#1, we must have k =1, since
otherwise [h,x] would commute with h in the action on V. So V is a
homogeneous N-module and we may decompose V into a direct sum of
isomorphic irreducible N-modules Uj;, which are two-dimensional. And since N
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is faithful on V and the submodules U; are isomorphic N-modules, N operates
faithfully on each U;. Thus N is isomorphic to a subgroup of a Sylow 2-subgroup
of GL.(r). We want to show that A is cyclic.

So assume that A is not cyclic, then A is a proper, elementary abelian normal
subgroup of N and by the structure of GL:(r), N must be a dihedrai group of
order 8, and A one of the two Klein fours groups contained in N. Since both N
and A are normal in G, h normalizes both fours groups in N and so z = h*
centralizes N. But now N operates on [V, z] and we may assume [V, z] = U,.
Thus U, is a nondegenerate symplectic space and N is isomorphic to a subgroup
of Sp(2,r)=SL:(r) and A has order two, contradicting the assumption. So we
know that every maximal elementary abelian normal subgroup G is cyclic and
therefore by [3], 5.4.10 G is either cyclic, dihedral, semidihedral or generalized
quaternion and by the structure of these groups there is only one involution in G
which is also a square. Clearly this involution is z, and so z € Z(G)and [V, z] is
G-invariant. This implies V =[V, z] and G is isomorphic to a subgroup of a
Sylow 2 subgroup of Sp(2, r) = SL(r) which is of order 2(r + 1) =2""". Thus the
index of (g) in G is at most two and (g) is normal in G. Clearly this contradicts
the assumption |x, h, h|# 1.

(2.6) THEOREM. Let G be a finite solvable group; p an odd prime, n = 1; or
p" =4. Then z:=x"""' € F(G) for every x € G\H,-(G).

PrROOF. Assume false and choose G a minimal counterexample, x €
G\H,(G) with z:=x"""' & F(G). We may assume that G is not a p-group.
First we prove the following property of F(G):

(*) F(G)= F(H,~(G))is the unique minimal normal subgroup of G.
Let N be a minimal normal subgroup of G. Then if NZ H,-(G) we get
[N, Hy-(G)]C N N Hy (G) =1,

whence there are elements y € N\H,-(G) such that Cs(y)2D H,-(G) is not a
p-group, contradicting (2.1)(iii). Thus every minimal normal subgroup of G is
contained in H,»(G). Let N, # N be two minimal normal subgroups of G. Then
[GIN:|<|G | for i =1,2 and since by (2.1)(ii)

H,»(GIN:)C Hy«(G)N/N; = H,»(G)/N,,

induction gives zN; € F,(G/N;). Let E;/N; = F5(G/N,), then z €E, for i =1,2;
and since E\N E;=F(G )by N;N N, =1 we have z € F(G) contradicting the
choice of x. Thus G has exactly one minimal normal subgroup. Assume
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¢(F(G))#1 then we can again use induction to F/¢(F(G)). But
F(G|d(F(F))=F(G)/¢(F(G)) and so the induction gives z € F:(G), con-
tradicting the hypothesis. Thus ¢(F(G))=1, and F(G) is a product of minimal
normal subgroups of G, and hence is the unique minimal normal subgroup of G.
Of course, F(G)= F(H,(G)). Put G:= G/F(G). Then G acts as a group of
linear transformations on the irreducible module F(G).

Induction to G/F(G) gives z € Fi(G), and by (2.4) there is some (x)-invariant
g-subgroup Q =[0Q,z}#1 of F(G)= F(G)/F(G).

Let V be an irreducible (X, Q)-submodule of F(G) not centralized by Q, then
(2.3) gives Co(x)# 1, since the hypotheses for (2.3) are given by (2.2)(i) and
(2.1)(iii). But now q divides the order of Cg(x), contradicting (2.1)(iii).

(2.7) THEOREM. Let G be a finite solvable group with G# H,-(G) for some
odd prime p,n = 1. Then h(G)=2n.

Proor. Use induction on n, the case n=1 being clear by the
Hughes-Kegel-Thompson Theorem.

We may assume F(G)C H,(G), since if y € B(GW\H,-(G), then [G,y]C
F{G) and G/F{G) is a p-group by (2.1(iii)). Let x € G\H,-(G) be an element
of order p". Then x”" ' € F(G) by (2.6) and therefore if G = G/F(G), every
element % in G\H,-(G) has order at most p"~'. Thus H,»(G)C H,-(G)# G
and induction gives h(G)=2(n—1).So h(G)=2+2(n—1)=2n and the result
follows.

(2.8) THEOREM. Let G be a finite solvable group, n = 1. Then x*""' € F(G)
for every x € G\H(G).

Proor. Assume false and take a counterexample G of minimal order. Let
x € G\H»(G) such that z:=x>"" & F,(G). Since the case n =1 is well known
(we have h(G)=2 if G# HAG)), we may assume n 2.

Then as in (2.6)(*) we can show that F(G)= F(H,-(G)) is the unique minimal
normal subgroup of G, and therefore by (2.1)(ii) we have H,-(G/F(G))C
H,-(G)/F(G); by minimality of G we get z € Fs(G). Thus z acts nontrivially on
O,(F(G)/F(G)) by (24) and so z&F((F{G),x)). Since by (2.1)(i)
H»({(F(G), x))C H»»(G) we know that (F,(G), x) is a counterexample to the
theorem, and so G = (F,(G), x) by minimality of G.

But also x & Hx»({[F:(G), z], x)) by (2.1) and so if {{F(G), z], x) < G we have
z € F,({([F(G), z], x)) by minimality of G. So there is a positive integer i such

h
e [F(G),z2,...,2] C[F(G), z] N F((F(G), z], x)) C F:([Fs, z]) C Fx(G)
\_—Y—J

1
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since [Fi(G), z} is a normal subgroup of G = (Fy(G), x). But now z centralizes
O.(F,(G)/F(G)) and by (2.4) we get z € F(G), contradicting the choice of x.
Thus we have G = {[F(G), z], x).

Next we show that z centralizes the Frattini factor group of

O(F(G) F(G))=:S.

So assume there is y €S such that [y, z] € ¢(S). Then [y, h, h] # 1 for h:=x>"",
since otherwise [y, z] =[y, h’] =y, k]’ is a square in S, and so an element of
¢ (S).

Since S operates faithfully on O, (F:(G)/F(G)) by (2.4), there is an odd
prime r such that [y, h h] does not centralize a critical subgroup R of
O.(F:(G)/F(G)). Put G = G/F(G), then G acts irreducibly on V = F(G), and
since R <1 G, the module V splits into the direct sum of its homogeneous
R-components Vy=V,+ --- +V,. Now z fixes every V; by (2.2)(ii) and
therefore [Fi(G), z] = F{(G) does as well.

But even h fixes every V,, since if h does not fix V; for some j, then the
minimal polynomial of x on V has degree at least 2"~ times the degree of the
minimal polynomial of z on V;, whence z has to induce a scalar multiplication on
V, by (2.2)(0). But now F(G)=[F.{(G), z] centralizes V; and so C\(F(G))=V
by the irreducible action of G. This is clearly impossible and so h fixes every V..
Let gbe an element of (x) of maximal order, say 2™, fixing V,. Then g fixes every
V; and acts exceptionally on every V; since these are permuted transitively by
(x).

But now if the (isomorphic) groups R/Cr (V) are elementary abelian, they are
cyclic and [S, k] C N, Cs(R/Cr(V)) = Cs(R) contradicting [y, h, h] & Cs(R).
Thus R/Ck(V)) is extraspecial for i=1,....k. Now if z centralizes some
R/Cr(V), then z centralizes the whole of R and S does as well, since
F(G)=[F\(G), z}], contradicting [y, h, h] & Cs(R). Thus we can apply [6]
Theorem 2.2 by restricting (R /Cz (V), ) to some irreducible submodule of V;.

As is well-known, 2" —1=r“ implies d = 1, and so if we view the Frattini
factor group of R/Cr (V) as a nondegenerate symplectic space over GF(r), the
commutator module of (g) on it has dimension of 2d =2. Now (2.5)(ii) is
applicable to show [y,h h]€ Cs(R/Cr(V)) and hence [y hh]€E
N, Cs(R/Cr(V)) = Cs(R), contradicting the choice of r. Thus we have shown

Now since we know that z operates nontrivially on O(F{G)/F{G)) we may
choose an odd prime g, such that z does not centralize O,(F:(G)/F(G)). Let
Q =[O, (F((G)/F(G)), z]; then Q# 1 operates faithfully on O,(F(G)/F(G))
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and there is a prime r # g, such that Q does not centralize O,(F:(G)/F(G)). But
as Q =[0, z] and z centralizes the Frattini factor group of O,(F:(G)/F(G)), we
know that Q centralizes O,(Fy(G)/F(G)) and therefore r# 2. Let R be a critical
subgroup of O,(Fy(G)/F(G)), then [Q,R]#1 and we may choose a G-
composition factor V of F.(G)/F(G) such that [Q, R]Z Cr(V).

Then let V=V, + --- +V, be the decomposition of the G-irreducible
module V into its homogeneous R -components, then z fixes every V; by (2.2)(ii)
and therefore Q =[Q,z] acts on every R/Cr(V}) and we may assume that
[O, R]Z Ck(V)). Let g be an element of maximal order 2™ in (x) fixing V,, then
again g is exceptional on V. Also R/Cr (V) is not cyclic, since z and Q =[Q, z]
act nontrivially on R/Cx(V:), and therefore R/Cr (V) is extraspecial. Now as
above [6] Theorem 2.2 gives that the commutator module of (g) on the Frattini
factor group of R/Cr(V)) viewed as a nondegenerate symplectic module over
GF(r) has dimension 2. But this obviously contradicts (2.6)(i).

(2.9) THEOREM. Let G be a finite solvable group with G # H,-(G) for some
n=1. Then h(G)=4n.

Proofr. The proof follows strictly the proof of (2.7).

We use induction over n; the case n =1 is well-known, so n = 2. Assume first
that F(G)Z H,+(G). Then for some y € F,(G)\H,-(G) we have [G, y] C F((G),
and by (2.1)(iii) G/F(G) is a p-group. Thus h(G)=5=2n and the result
follows since n = 2.

So we may assume Fi(G)C H»-(G). By (2.8) x*" € Fi(G) for every x €
G\H» (G), and so if G = G/F(G), every element of G\H,-(G) has order at
most 2*~". Thus H:»»-(G)C H»»(G) # G and by induction h(G) = 4(n — 1). This,
.of course, gives the desired result h(G)=4+4(n —1)=4n.

As we indicated in the introduction, the Fitting length of solvable H,~-groups
“should be” the same as the Fitting length of a solvable group admitting a fixed-
point-free cyclic automorphism group of order p" which is n. The following
example shows that the Fitting length of a solvable H,--group is at least n.

ExampLE. The semidirect product of a solvable group H of Fitting length n
admitting a cyclic fixed-point-free automorphism group A of order p” (such
groups can easily be constructed) with this fixed-point-free automorphism group
A has the following property:

H,~(HA)= HA’= HA and h(H) = n.

But to our knowledge there are no examples of H,~-groups known with Fitting
height bigger than n. So perhaps the bound on the Fitting length of G in
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Theorems (2.7) and (2.9) could be proven to be n+1. As a test for that
“conjecture” we look at the case p" =4.

(2.10) THEOREM. Let G be a finite solvable group with G# H{G). Then
h(G)=3.

ProOF. Assume false and let G be a minimal counterexample. As in (2.6)(*)
we may assume that F(G) = F(H.(G)) is the unique minimal normal subgroup
of G and by (2.6) x> € F(G) for every x € G\HJ(G).

If F(G)= OxG), then 2 does not divide the order of F(G)/F(G) and
x> € F(G) for every x € G\H(G). If we put G:= G/F(G), every element in
G\H.(G) is an involution, and by the nilpotence of Hx-groups we get h(G)=2
and h(G) = 3. Thus we may assume that V = F(G) = O, for some odd prime p.
As above F(G)C H(G). Now S = O,(G)#1, and Cv(S)=0 by the faithful
and irreducible action of G on V. Let Vs=V,+ --- + V; be the decomposition
of V into its homogeneous S-components, then Z(S/Cs(V) operates fixed-
point-freely on V;, so for every i there is an element d; in S inverting V;
elementwise. Therefore, if for x € G\H,(G) we have Cy(x*)#0, then since
x’ € S, there is an index i such that either x or xd; has a nontrivial fixed point on
V; contradicting (2.1)(iii). Therefore [G,#°]C Cs(V)=1 and %*€ Z(G) for
every x € G\H.(G). But now if %(G) = Z(G), we have Z = H,(G) and for
G = G/Z every element of G\H,(G) is an involution. Therefore G# H,(G)
and h(G)=2. But, of course, h(G)= h(G), and so h(G)=1+ h(G) =<3, afinal
contradiction.
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